论文标题
真空模块和相关品种的简单性
Simplicity of vacuum modules and associated varieties
论文作者
论文摘要
在本说明中,我们证明了与简单的lie代数$ \ mathfrak {g} $相关的通用仿射顶点代数很简单,并且仅当其关联的唯一简单商的相关品种等于$ \ mathfrak {g}^*$。我们还得出了应用于通用仿射顶点代数的量化的德林菲尔德 - 索科洛夫还原的类似结果。
In this note, we prove that the universal affine vertex algebra associated with a simple Lie algebra $\mathfrak{g}$ is simple if and only if the associated variety of its unique simple quotient is equal to $\mathfrak{g}^*$. We also derive an analogous result for the quantized Drinfeld-Sokolov reduction applied to the universal affine vertex algebra.