论文标题

无监督域适应的空间注意金字塔网络

Spatial Attention Pyramid Network for Unsupervised Domain Adaptation

论文作者

Li, Congcong, Du, Dawei, Zhang, Libo, Wen, Longyin, Luo, Tiejian, Wu, Yanjun, Zhu, Pengfei

论文摘要

在各种计算机视觉任务(例如对象检测,实例细分和语义细分)中,无监督的域的适应至关重要,该任务旨在减轻域移位引起的性能降低。以前的大多数方法都依赖于源和目标域的单模分布与对抗性学习对齐,从而导致各种情况下导致劣等。为此,在本文中,我们为无监督的域适应设计了一个新的空间注意金字塔网络。具体而言,我们首先构建空间金字塔表示,以捕获不同尺度的对象的上下文信息。在特定于任务的信息的指导下,我们使用空间注意机制有效地结合了每个空间位置的密集全局结构表示和局部纹理模式。通过这种方式,网络被强制专注于具有域适应性上下文信息的歧视区域。我们对各种具有挑战性的数据集进行了广泛的实验,以针对对象检测,实例分割和语义分割的无监督域适应,这表明我们的方法通过较大的差距对最先进的方法有利。我们的源代码可在https://isrc.iscas.ac.cn/gitlab/research/domain-adaption上找到。

Unsupervised domain adaptation is critical in various computer vision tasks, such as object detection, instance segmentation, and semantic segmentation, which aims to alleviate performance degradation caused by domain-shift. Most of previous methods rely on a single-mode distribution of source and target domains to align them with adversarial learning, leading to inferior results in various scenarios. To that end, in this paper, we design a new spatial attention pyramid network for unsupervised domain adaptation. Specifically, we first build the spatial pyramid representation to capture context information of objects at different scales. Guided by the task-specific information, we combine the dense global structure representation and local texture patterns at each spatial location effectively using the spatial attention mechanism. In this way, the network is enforced to focus on the discriminative regions with context information for domain adaption. We conduct extensive experiments on various challenging datasets for unsupervised domain adaptation on object detection, instance segmentation, and semantic segmentation, which demonstrates that our method performs favorably against the state-of-the-art methods by a large margin. Our source code is available at https://isrc.iscas.ac.cn/gitlab/research/domain-adaption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源