论文标题

僵硬的可折叠性和山谷折痕折纸折纸图案的分配

Rigid Foldability and Mountain-Valley Crease Assignments of Square-Twist Origami Pattern

论文作者

Feng, Huijuan, Peng, Rui, Zang, Shixi, Ma, Jiayao, Chen, Yan

论文摘要

刚性的可折叠性使折纸图案可以在不扭曲或拉伸组件面板的情况下折叠折痕线。它可以折叠刚性材料,从而促进可折叠结构的设计。最近的研究表明,刚性可折叠性受折纸模式的山谷折痕(M-V)分配的影响。在本文中,我们通过基于运动传递路径的运动学方法研究了方形折纸折纸图案的刚性可折叠性。分析了四种类型的方扭折折纸图案,其中两种可刚性折叠,而另外两种则不是。刚性情况的显式运动学方程是根据刚性折纸模式与球形4R链接的闭环网络之间的运动量等效得出的。我们还提出了一种折痕粘合方法,以转换非刚性模式的刚性可折叠性。检查了修改模式的运动兼容性条件,该条件验证了修改模式的刚性可折叠性。运动学分析揭示了修饰模式的分叉行为。这项工作不仅有助于加深我们对折纸模式的严格可折叠性及其与M-V分配的关系的理解,而且还为我们提供了一种有效的方法,可以从非刚性折纸模式中创建更僵硬的折叠折纸模式。

Rigid foldability allows an origami pattern to fold about crease lines without twisting or stretching component panels. It enables folding of rigid materials, facilitating the design of foldable structures. Recent study shows that rigid foldability is affected by the mountain-valley crease (M-V) assignment of an origami pattern. In this paper, we investigate the rigid foldability of the square-twist origami pattern with diverse M-V assignments by a kinematic method based on the motion transmission path. Four types of square-twist origami patterns are analyzed, among which two are found rigidly foldable, while the other two are not. The explicit kinematic equations of the rigid cases are derived based on the kinematic equivalence between the rigid origami pattern and the closed-loop network of spherical 4R linkages. We also propose a crease-addition method to convert the rigid foldability of the non-rigid patterns. The motion compatibility conditions of the modified patterns are checked, which verify the rigid foldability of the modified patterns. The kinematic analysis reveals the bifurcation behaviour of the modified patterns. This work not only helps to deepen our understanding on the rigid foldability of origami patterns and its relationship with the M-V assignments, but also provides us an effective way to create more rigidly foldable origami patterns from non rigid ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源