论文标题
NPENA:神经预测指导的神经结构搜索的进化
NPENAS: Neural Predictor Guided Evolution for Neural Architecture Search
论文作者
论文摘要
神经体系结构搜索(NAS)是一种自动设计神经体系结构的有前途的方法。 NAS采用搜索策略来探索预定义的搜索空间,以找到最低搜索成本的出色性能体系结构。贝叶斯优化和进化算法是两种常用的搜索策略,但它们遭受了计算昂贵的,挑战在实施或效率低下的探索能力。在本文中,我们提出了一种神经预测因子引导的进化算法,以增强EA对NAS(NPENAS)的勘探能力和设计两种神经预测因子。第一个预测因子是由贝叶斯优化定义的,我们提出了一个基于图的不确定性估计网络作为替代模型,易于实现且在计算上有效。第二个预测指标是基于图的神经网络,该神经网络直接输出输入神经体系结构的性能预测。使用两个神经预测因子的NPENA分别表示为NPENAS-BO和NPENAS-NP。此外,我们引入了一种新的随机体系结构抽样方法,以克服现有采样方法的缺点。广泛的实验证明了NPENA的优势。三个NAS搜索空间的定量结果表明,NPENAS-BO和NPENAS-NP均优于最现有的NAS算法,NPENAS-BO在NASBENCH-2010和NASBENCH-101和DARTS上分别在NASBENCH-2011和NPENAS-NP上实现了最先进的性能。
Neural architecture search (NAS) is a promising method for automatically design neural architectures. NAS adopts a search strategy to explore the predefined search space to find outstanding performance architecture with the minimum searching costs. Bayesian optimization and evolutionary algorithms are two commonly used search strategies, but they suffer from computationally expensive, challenge to implement or inefficient exploration ability. In this paper, we propose a neural predictor guided evolutionary algorithm to enhance the exploration ability of EA for NAS (NPENAS) and design two kinds of neural predictors. The first predictor is defined from Bayesian optimization and we propose a graph-based uncertainty estimation network as a surrogate model that is easy to implement and computationally efficient. The second predictor is a graph-based neural network that directly outputs the performance prediction of the input neural architecture. The NPENAS using the two neural predictors are denoted as NPENAS-BO and NPENAS-NP respectively. In addition, we introduce a new random architecture sampling method to overcome the drawbacks of the existing sampling method. Extensive experiments demonstrate the superiority of NPENAS. Quantitative results on three NAS search spaces indicate that both NPENAS-BO and NPENAS-NP outperform most existing NAS algorithms, with NPENAS-BO achieving state-of-the-art performance on NASBench-201 and NPENAS-NP on NASBench-101 and DARTS, respectively.