论文标题

HIN:文档级关系提取的分层推理网络

HIN: Hierarchical Inference Network for Document-Level Relation Extraction

论文作者

Tang, Hengzhu, Cao, Yanan, Zhang, Zhenyu, Cao, Jiangxia, Fang, Fang, Wang, Shi, Yin, Pengfei

论文摘要

文档级别需要在多个句子上阅读,推断和汇总。从我们的角度来看,文档级RE有必要利用多范围推理信息:实体级别,句子级别和文档级别。因此,如何以不同的粒度获取和汇总推理信息对于文档级别的RE具有挑战性,这是先前工作尚未考虑的。在本文中,我们提出了一个分层推理网络(HIN),以充分利用来自实体级别,句子级别和文档级别的丰富信息。翻译约束和双线性转换应用于多个子空间中的目标实体对,以获取实体级推理信息。接下来,我们对实体级信息和句子表示之间的推理进行建模,以实现句子级别的推理信息。最后,采用了层次聚合方法来获取文档级推断信息。这样,我们的模型可以有效地从这三种不同的粒度中汇总推理信息。实验结果表明,我们的方法在大规模DOCRED数据集上实现了最先进的性能。我们还证明,使用BERT表示可以进一步提高性能。

Document-level RE requires reading, inferring and aggregating over multiple sentences. From our point of view, it is necessary for document-level RE to take advantage of multi-granularity inference information: entity level, sentence level and document level. Thus, how to obtain and aggregate the inference information with different granularity is challenging for document-level RE, which has not been considered by previous work. In this paper, we propose a Hierarchical Inference Network (HIN) to make full use of the abundant information from entity level, sentence level and document level. Translation constraint and bilinear transformation are applied to target entity pair in multiple subspaces to get entity-level inference information. Next, we model the inference between entity-level information and sentence representation to achieve sentence-level inference information. Finally, a hierarchical aggregation approach is adopted to obtain the document-level inference information. In this way, our model can effectively aggregate inference information from these three different granularities. Experimental results show that our method achieves state-of-the-art performance on the large-scale DocRED dataset. We also demonstrate that using BERT representations can further substantially boost the performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源