论文标题

Ramanujan参数及其同伴的5次摩擦和符号模式

5-Dissections and sign patterns of Ramanujan's parameter and its companion

论文作者

Chern, Shane, Tang, Dazhao

论文摘要

1998年,迈克尔·赫希霍恩(Michael Hirschhorn)发现了罗杰斯(Rogers)的5隔离 - 罗杰恩(Ramanujan)继续分数$ r(q)$及其倒数。在本文中,我们获得了功能$ r(q)r(q^2)^2 $和$ r(q)^2/r(q^2)$的5摩尔,这实际上是Ramanujan的参数及其同伴。这两个函数的倒数的5隔离也被得出。这些5次摩擦意味着其系列扩展中的系数具有周期性的符号模式,但很少有例外。

In 1998, Michael Hirschhorn discovered 5-dissections of the Rogers--Ramanujan continued fraction $R(q)$ and its reciprocal. In this paper, we obtain the 5-dissections for functions $R(q)R(q^2)^2$ and $R(q)^2/R(q^2)$, which are essentially Ramanujan's parameter and its companion. 5-Dissections of the reciprocals of these two functions are derived as well. These 5-dissections imply that the coefficients in their series expansions have periodic sign patterns with few exceptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源