论文标题
旋转异常旋转动力学的理论 - $ \ frac {1} {2} $三角晶格Heisenberg AntiferRomagnet及其应用于ba $ _3 $ _3 $ cosb $ _2 $ _2 $ _9 $
Theory of the anomalous spin dynamics of spin-$\frac{1}{2}$ triangular lattice Heisenberg antiferromagnet and its application to Ba$_3$CoSb$_2$O$_9$
论文作者
论文摘要
尽管旋转 - $ \ frac {1} {2} $三角形晶格Heisenberg Antiferromagnet(TLHAF)具有长期有序的基态,但对其旋转动力学的彻底理解仍然缺少。虽然线性自旋波理论(LSWT)预测了磁性brirouin区(MBZ)中镁模式的三个分支,但发现下一个顺序的1/s扩展会在围绕M点的大部分MBZ中分解,使磁岩模式的命运尚未确定。 BA $ _3 $ cosb $ _2 $ o $ _9 $上的最新中子散射测量,对旋转的理想实现 - $ \ frac {1} {2} {2} $ tlhaf,为这个问题提供了一个惊人的答案。在M点周围观察到了两个,而不是三个分支,它们的分散相对于LSWT的预测而被强烈重新归一化,并在M点显示出明显的旋转最小值。这伴随着在较高能量下强烈的自旋波动连续体,在其中观察到了两个强和宽阔的光谱峰。在这项工作中,我们通过在系统的基态描述中调用共鸣价键(RVB)物理学来为这些光谱异常提出一张简单的图片。我们发现,可以通过在$π$ -Flux的背景下移动的集体自旋波动与Dirac Spinon激发的连续体之间的耦合来解释木剂分散体中的最小值。我们还建议,连续体中的两个宽峰可以分别理解为Landau抑制了第三磁化模式和Landau抑制了纵向模式。可以通过研究各种光谱特征的极化特征来验证这样的图片。
Although it is well accepted that the spin-$\frac{1}{2}$ triangular lattice Heisenberg antiferromagnet(TLHAF) has a long range ordered ground state, a thorough understanding of its spin dynamics is still missing. While the linear spin wave theory(LSWT) predicts three branches of magnon mode in the magnetic Brillouin zone(MBZ), the 1/S expansion at the next order is found to break down in a large portion of the MBZ centered around the M point, leaving the fate of the magnon modes there undecided. Recent neutron scattering measurement on Ba$_3$CoSb$_2$O$_9$, an ideal realization of the spin-$\frac{1}{2}$ TLHAF, provides a surprising answer to this issue. Two, rather than three branches of magnon mode are observed around the M point, whose dispersion are strongly renormalized with respect to the LSWT prediction and exhibit pronounced roton-like minimum at the M point. This is accompanied by a strong spin fluctuation continuum at higher energy, inside which two strong and broad spectral peaks of unknown origin are observed. In this work, we propose a simple picture for these spectral anomalies by invoking the resonating valence bond(RVB) physics in the description of the ground state of the system. We find that the roton-like minimum in the magnon dispersion can be explained by the coupling between the collective spin fluctuation and the continuum of Dirac spinon excitation moving in a $π$-flux background. We also propose that the two broad peaks in the continuum can be understood respectively as the Landau damped third magnon mode and the Landau damped longitudinal mode. Such a picture can be verified by studying the polarization character of the various spectral features.