论文标题

通过学习而无需地面真相来减少磁共振图像间距

Reducing Magnetic Resonance Image Spacing by Learning Without Ground-Truth

论文作者

Xuan, Kai, Si, Liping, Zhang, Lichi, Xue, Zhong, Jiao, Yining, Yao, Weiwu, Shen, Dinggang, Wu, Dijia, Wang, Qian

论文摘要

高质量的磁共振(MR)图像,即具有近乎各向同性体素间距的图像,在医学图像分析的各种情况下都是可取的。但是,许多MR采购在临床实践中使用了大型层间间距。在这项工作中,我们提出了一种新型的基于学习的超分辨率算法,以产生高分辨率(HR)MR图像,并具有较大的较大切片间距的低分辨率(LR)输入的较小切片间距。请注意,大多数现有的基于学习的方法都需要配对的LR和HR图像来监督培训,但是在临床情况下,通常不会获取HR图像。因此,我们在本文中的独特目标是设计和训练没有真正的人力资源基地真相的超分辨率网络。具体来说,我们的方法中使用了两个训练阶段。首先,使用变异自动编码器(VAE)从实际LR图像中合成了减少切片间距的HR图像。尽管这些合成的HR图像尽可能逼真,但它们仍可能会遭受VAE引起的意外变形的折磨,这意味着合成的HR图像不能与解剖结构细节相结合。在第二阶段,我们降低了合成的HR图像以生成相应的LR图像,并基于这些合成的HR和降解的LR对训练超分辨率网络。潜在的机制是,这种超分辨率网络不太容易受到解剖变异性的影响。膝盖MR图像的实验成功证明了我们提出的解决方案的有效性,以减少切片间距以更好地渲染。

High-quality magnetic resonance (MR) image, i.e., with near isotropic voxel spacing, is desirable in various scenarios of medical image analysis. However, many MR acquisitions use large inter-slice spacing in clinical practice. In this work, we propose a novel deep-learning-based super-resolution algorithm to generate high-resolution (HR) MR images with small slice spacing from low-resolution (LR) inputs of large slice spacing. Notice that most existing deep-learning-based methods need paired LR and HR images to supervise the training, but in clinical scenarios, usually no HR images will be acquired. Therefore, our unique goal herein is to design and train the super-resolution network with no real HR ground-truth. Specifically, two training stages are used in our method. First, HR images of reduced slice spacing are synthesized from real LR images using variational auto-encoder (VAE). Although these synthesized HR images are as realistic as possible, they may still suffer from unexpected morphing induced by VAE, implying that the synthesized HR images cannot be paired with the real LR images in terms of anatomical structure details. In the second stage, we degrade the synthesized HR images to generate corresponding LR images and train a super-resolution network based on these synthesized HR and degraded LR pairs. The underlying mechanism is that such a super-resolution network is less vulnerable to anatomical variability. Experiments on knee MR images successfully demonstrate the effectiveness of our proposed solution to reduce the slice spacing for better rendering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源