论文标题
谷氨酰胺表面附近的水扩散的第一盘指纹
First-passage Fingerprints of Water Diffusion near Glutamine Surfaces
论文作者
论文摘要
生物界面影响水动力学的程度在对生命必不可少的物质和化学相互作用的交换中起关键作用。水分子的密度和迁移率取决于它们与生物界面的接近性,并且可以在诸如蛋白质折叠和聚集的过程中起重要作用。在这项工作中,我们研究了谷氨酰胺表面附近的水的动力学---神经退行性疾病研究的系统。结合了分子动力学模拟和随机建模,我们研究了逃避亚纳光尺寸区域的水分子的平均第一学期时间和相关统计数据,从界面到散装方式有所不同。我们的分析揭示了一种动态复杂性,反映了谷氨酰胺表面的基本化学和几何特性。从水分子的第一分时间统计量,我们推断出它们的空间依赖性扩散系数在正常表面的方向上。有趣的是,我们的结果表明,与与水 - 蛋白质相互作用相关的化学电位相比,水的迁移率在更长的长度尺度上变化。分子动力学和第一学本技术的协同作用为在生命物质中司空见惯的更复杂,不均匀的环境中提取依赖空间依赖的扩散系数的可能性。
The extent to which biological interfaces affect the dynamics of water plays a key role in the exchange of matter and chemical interactions that are essential for life. The density and the mobility of water molecules depend on their proximity to biological interfaces and can play an important role in processes such as protein folding and aggregation. In this work, we study the dynamics of water near glutamine surfaces---a system of interest in studies of neurodegenerative diseases. Combining molecular-dynamics simulations and stochastic modelling, we study how the mean first-passage time and related statistics of water molecules escaping subnanometer-sized regions vary from the interface to the bulk. Our analysis reveals a dynamical complexity that reflects underlying chemical and geometrical properties of the glutamine surfaces. From the first-passage time statistics of water molecules, we infer their space-dependent diffusion coefficient in directions normal to the surfaces. Interestingly, our results suggest that the mobility of water varies over a longer length scale than the chemical potential associated with the water-protein interactions. The synergy of molecular dynamics and first-passage techniques opens the possibility for extracting space-dependent diffusion coefficients in more complex, inhomogeneous environments that are commonplace in living matter.