论文标题

GeoFusion:密集混乱中的几何一致性知情场景估计

GeoFusion: Geometric Consistency informed Scene Estimation in Dense Clutter

论文作者

Sui, Zhiqiang, Chang, Haonan, Xu, Ning, Jenkins, Odest Chadwicke

论文摘要

我们提出了GeoFusion,这是一种基于大满贯的场景估计方法,用于在密集的混乱中构建对象级的语义图。在密集的混乱中,物体通常处于密切的接触和严重的阻塞中,从现有的感知方法中带来了更多的错误检测和嘈杂的姿势估计。为了解决这些问题,我们的主要见解是考虑一般大满贯框架内的对象级别的几何一致性。几何一致性分为两个部分:几何一致性评分和几何关系。几何一致性得分描述了对象几何模型和观察点云之间的兼容性。同时,它提供了一种可靠的措施,可以过滤数据关联中的误报。几何关系表示对象之间几何特征(例如平面)之间的关系(例如接触)。几何关系使姿势的图表优化更加稳健和准确。从连续嘈杂的语义测量值中,地理宣传可以强度有效地推断对象标签,6D对象构成和空间关系。我们使用提取移动操纵机器人的观测来定量评估我们的方法。我们的结果表明,与最先进的卷积神经网络中的逐帧姿势估计相比,针对错误估计的鲁棒性更大。

We propose GeoFusion, a SLAM-based scene estimation method for building an object-level semantic map in dense clutter. In dense clutter, objects are often in close contact and severe occlusions, which brings more false detections and noisy pose estimates from existing perception methods. To solve these problems, our key insight is to consider geometric consistency at the object level within a general SLAM framework. The geometric consistency is defined in two parts: geometric consistency score and geometric relation. The geometric consistency score describes the compatibility between object geometry model and observation point cloud. Meanwhile, it provides a reliable measure to filter out false positives in data association. The geometric relation represents the relationship (e.g. contact) between geometric features (e.g. planes) among objects. The geometric relation makes the graph optimization for poses more robust and accurate. GeoFusion can robustly and efficiently infer the object labels, 6D object poses, and spatial relations from continuous noisy semantic measurements. We quantitatively evaluate our method using observations from a Fetch mobile manipulation robot. Our results demonstrate greater robustness against false estimates than frame-by-frame pose estimation from the state-of-the-art convolutional neural network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源