论文标题

如何维修不可汇总的Kahan离散

How one can repair non-integrable Kahan discretizations

论文作者

Petrera, Matteo, Suris, Yuri B., Zander, René

论文摘要

Kahan离散化适用于带有二次矢量字段的$ \ mathbb r^n $上的任何普通微分方程系统,$ \ dot {x} = f(x)= q(x)+bx+c $,并产生一个Birational Map $ x \ mapsto \ mapsto \ mapsto \ didetiLde {x} $, $(\ widetilde {x} -x)/ε= q(x,x,\ widetilde {x})+b(x+\ \ \ \ widetilde {x})/2+c $,其中$ q(x,\ widetilde {x})$是对称的biLineAR形式与quadratic y quadratic quadratic $ $ q(x)$ q(x)。当应用于集成系统时,Kahan离散化可以比先验地预期的要更频繁地保持集成性,但是并非总是如此。我们表明,在某些情况下,如果原始配方无法保留可集成性,则可以调整Kahan离散化的系数以确保其集成性。

Kahan discretization is applicable to any system of ordinary differential equations on $\mathbb R^n$ with a quadratic vector field, $\dot{x}=f(x)=Q(x)+Bx+c$, and produces a birational map $x\mapsto \widetilde{x}$ according to the formula $(\widetilde{x}-x)/ε=Q(x,\widetilde{x})+B(x+\widetilde{x})/2+c$, where $Q(x,\widetilde{x})$ is the symmetric bilinear form corresponding to the quadratic form $Q(x)$. When applied to integrable systems, Kahan discretization preserves integrability much more frequently than one would expect a priori, however not always. We show that in some cases where the original recipe fails to preserve integrability, one can adjust coefficients of the Kahan discretization to ensure its integrability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源