论文标题

iMac:6T SRAM阵列中的内存中多位乘积和蓄积

IMAC: In-memory multi-bit Multiplication andACcumulation in 6T SRAM Array

论文作者

Ali, Mustafa, Jaiswal, Akhilesh, Kodge, Sangamesh, Agrawal, Amogh, Chakraborty, Indranil, Roy, Kaushik

论文摘要

“内存计算”被广泛探讨为一种新型计算范式,以减轻众所周知的记忆瓶颈。这种新兴范式旨在将计算的某些方面嵌入内存阵列内,从而避免计算单元和存储内存之间的频繁且昂贵的数据移动。关于硅记忆的内存计算已在各种内存位细胞上广泛探索。嵌入6个晶体管(6T)SRAM阵列内的计算是特别有趣的,因为它是最广泛使用的片上存储器。在本文中,我们提出了一种新型的内存乘法,然后提出了能够在6T SRAM内执行并行点产物的积累操作,而不会对标准比特电池进行任何更改。此外,我们研究了非理想性和过程变化对LENET-5和VGG神经网络架构对MNIST和CIFAR-10数据集的准确性的影响。提议的内存中点产物机制分别为CIFAR-10和MNIST实现了88.8%和99%的精度。与标准的von Neumann系统相比,所提出的系统在能源消耗方面的分数要好6.24倍,延迟效力要好9.42倍。

`In-memory computing' is being widely explored as a novel computing paradigm to mitigate the well known memory bottleneck. This emerging paradigm aims at embedding some aspects of computations inside the memory array, thereby avoiding frequent and expensive movement of data between the compute unit and the storage memory. In-memory computing with respect to Silicon memories has been widely explored on various memory bit-cells. Embedding computation inside the 6 transistor (6T) SRAM array is of special interest since it is the most widely used on-chip memory. In this paper, we present a novel in-memory multiplication followed by accumulation operation capable of performing parallel dot products within 6T SRAM without any changes to the standard bitcell. We, further, study the effect of circuit non-idealities and process variations on the accuracy of the LeNet-5 and VGG neural network architectures against the MNIST and CIFAR-10 datasets, respectively. The proposed in-memory dot-product mechanism achieves 88.8% and 99% accuracy for the CIFAR-10 and MNIST, respectively. Compared to the standard von Neumann system, the proposed system is 6.24x better in energy consumption and 9.42x better in delay.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源