论文标题
多模式分布式量子计量学中的海森贝格缩放精度
Heisenberg scaling precision in multi-mode distributed quantum metrology
论文作者
论文摘要
我们提出了一个$ n $ photon高斯测量方案,该方案允许估算具有Heisenberg缩放精度(即订单$ 1/n $)的多端口干涉仪中编码的参数$φ$。在此协议中,除线性和被动性外,对干涉仪的结构没有任何限制,从而允许参数$φ$在几个组件上分布。在所有先前的建议中,都已经获得了海森贝格缩放的规模,只要输入状态和输出的测量都适当地适合未知参数$φ$。这是一个严重的缺点,在实践中使用一系列试验输入状态和测量值的迭代程序,这涉及未量化的其他资源。值得注意的是,我们发现只有一个阶段必须进行调整,这使另一个阶段的选择完全任意。我们还表明,在优化阶段,我们的方案对缺陷是可靠的。此外,我们表明自适应过程仅需要初步的经典知识(即到该参数上的精度$ 1/\ sqrt {n} $),而不得进一步的资源。结果,可以使用相同的改编阶段用海森堡限制的精度来监视订单的参数的任何变化$ 1/\ sqrt {n} $,而无需任何进一步的改编。
We propose an $N$-photon Gaussian measurement scheme which allows the estimation of a parameter $φ$ encoded into a multi-port interferometer with a Heisenberg scaling precision (i.e. of order $1/N$). In this protocol, no restrictions on the structure of the interferometer are imposed other than linearity and passivity, allowing the parameter $φ$ to be distributed over several components. In all previous proposals Heisenberg scaling has been obtained provided that both the input state and the measurement at the output are suitably adapted to the unknown parameter $φ$. This is a serious drawback which would require in practice the use of iterative procedures with a sequence of trial input states and measurements, which involve an unquantified use of additional resources. Remarkably, we find that only one stage has to be adapted, which leaves the choice of the other stage completely arbitrary. We also show that our scheme is robust against imperfections in the optimized stage. Moreover, we show that the adaptive procedure only requires a preliminary classical knowledge (i.e to a precision $1/\sqrt{N}$) on the parameter, and no further additional resources. As a consequence, the same adapted stage can be employed to monitor with Heisenberg-limited precision any variation of the parameter of the order of $1/\sqrt{N}$ without any further adaptation.