论文标题
截断的真实插值方法和筛选的Sobolev空间的表征
A truncated real interpolation method and characterizations of screened Sobolev spaces
论文作者
论文摘要
在本文中,我们证明了筛选的Sobolev空间的结构和拓扑表征,其筛选函数在下方和更高上由正常数界定。我们将插值的方法概括为半态空间的情况。我们称之为截断的方法的方法生成了筛选的Sobolev亚家族和更一般的筛选BESOV刻度。然后,我们证明了筛选的BESOV空间等效于Lebesgue空间的总和和均匀的Sobolev空间,并提供了Littlewood-Paley频率空间表征。
In this paper we prove structural and topological characterizations of the screened Sobolev spaces with screening functions bounded below and above by positive constants. We generalize a method of interpolation to the case of seminormed spaces. This method, which we call the truncated method, generates the screened Sobolev subfamily and a more general screened Besov scale. We then prove that the screened Besov spaces are equivalent to the sum of a Lebesgue space and a homogeneous Sobolev space and provide a Littlewood-Paley frequency space characterization.