论文标题

宏观定律如何描述复杂的动力学:无症状人群和共vid-19

How macroscopic laws describe complex dynamics: asymptomatic population and CoviD-19 spreading

论文作者

Lanteri, D., Carco', D., Castorina, P.

论文摘要

宏观生长定律,平均方程的解决方案,以有效的方式描述一种基本的复杂动力学。它们被应用于研究感染的传播,例如在Covid-19的情况下,累积的数字$ n(t)$的计数是被检测到的受感染个体的$ n(t)$是一个普遍接受的,粗粒的,可变性的,可以理解流行阶段。但是,$ n(t)$没有考虑到未知数量的无症状,未检测到的案例$ a(t)$。因此,出现的问题是,观察到的$ n(t)$的数据的时间序列是监测传染病演变的可靠工具。我们研究了一个耦合微分方程的系统,其中包括有症状和无症状个体之间传播的动力学以及由于社会隔离而引起的强大遏制效应。因此,该解决方案与人口$ n(t)$的宏观定律来自单个,非线性的,微分方程,没有明确的参考$ a(t)$,显示了两种方法的等效性。实际上,$ n(t)$考虑了一种更复杂,更详细的人口动态,该动态也允许评估无症状个体的数量。然后将该模型应用于意大利的COVID-19,在该模型中,在最近的数据中观察到了从指数行为向Gompertz增长的过渡。然后,$ n(t)$的数据分析中包含的信息可靠地了解流行阶段,尽管它没有描述总体感染人群。在扩散的快速生长阶段,无症状的人群大于有症状的人群。

Macroscopic growth laws, solutions of mean field equations, describe in an effective way an underlying complex dynamics. They are applied to study the spreading of infections, as in the case of CoviD-19, where the counting of the cumulated number $N(t)$ of detected infected individuals is a generally accepted, coarse-grain, variable to understand the epidemic phase. However $N(t)$ does not take into account the unknown number of asymptomatic, not detected, cases $A(t)$. Therefore, the question arises if the observed time series of data of $N(t)$ is a reliable tool for monitoring the evolution of the infectious disease. We study a system of coupled differential equations which includes the dynamics of the spreading among symptomatic and asymptomatic individuals and the strong containment effects due to the social isolation. The solution is therefore compared with a macroscopic law for the population $N(t)$ coming from a single, non-linear, differential equation with no explicit reference to $A(t)$, showing the equivalence of the two methods. Indeed, $N(t)$ takes into account a more complex and detailed population dynamics which permits the evaluation of the number of asymptomatic individuals also. The model is then applied to Covid-19 spreading in Italy where a transition from an exponential behavior to a Gompertz growth for $N(t)$ has been observed in more recent data. Then the information contained in the data analysis of $N(t)$ is reliable to understand the epidemic phase, although it does not describe the total infected population. The asymptomatic population is larger than the symptomatic one in the fast growth phase of the spreading.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源