论文标题

$ \ text {ag}(n,q)$的cameron-liebler $ k $ -set

Cameron-Liebler $k$-sets in $\text{AG}(n,q)$

论文作者

D'haeseleer, Jozefien, Ihringer, Ferdinand, Mannaert, Jonathan, Storme, Leo

论文摘要

我们研究仿射几何形状中的Cameron-Liebler $ k $ -set,因此$ \ text {ag}(ag}(n,q)$的$ k $ spaces集合。这概括了对投影几何$ \ text {pg}(n,q)$的Cameron-Liebler $ K $ -Set的研究。请注意,在代数组合学中,Cameron-liebler $ k $ - $ \ text {ag}(n,q)$的$对应于$ k $ spaces in $ \ text {ag ag}(ag}(n,q)$的某些公平两分,同时,在布尔函数的分析中,$ 1 $ $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ 1 $ $ 1 $ 1 $ 1 $ $ 1 Q)$。我们通过与$ k $ spreads的交集属性定义$ \ text {ag}(n,q)$中的cameron-liebler $ k $ -sets(n,q)$,并显示了几个定义的等效性。特别是,我们研究了$ \ text {ag}(n,q)$和$ \ text {pg}(n,q)$中的cameron-liebler $ k $ -set之间的关系。作为副产品,我们计算仿期线的关联方案的特征表。此外,我们描述了Cameron-Liebler $ k $ -set的最小示例。本文重点介绍$ n> 3 $的$ \ text {ag}(n,q)$,而$ \ text {ag}(3,q)$中的Cameron-Liebler Line类的情况已经单独处理。

We study Cameron-Liebler $k$-sets in the affine geometry, so sets of $k$-spaces in $\text{AG}(n, q)$. This generalizes research on Cameron-Liebler $k$-sets in the projective geometry $\text{PG}(n, q)$. Note that in algebraic combinatorics, Cameron-Liebler $k$-sets of $\text{AG}(n, q)$ correspond to certain equitable bipartitions of the Association scheme of $k$-spaces in $\text{AG}(n, q)$, while in the analysis of Boolean functions, they correspond to Boolean degree $1$ functions of $\text{AG}(n, q)$. We define Cameron-Liebler $k$-sets in $\text{AG}(n, q)$ by intersection properties with $k$-spreads and show the equivalence of several definitions. In particular, we investigate the relationship between Cameron-Liebler $k$-sets in $\text{AG}(n, q)$ and $\text{PG}(n, q)$. As a by-product, we calculate the character table of the association scheme of affine lines. Furthermore, we characterize the smallest examples of Cameron-Liebler $k$-sets. This paper focuses on $\text{AG}(n, q)$ for $n > 3$, while the case for Cameron-Liebler line classes in $\text{AG}(3, q)$ was already treated separately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源