论文标题
具有基质产品密度运算符的多体系统的有效描述
Efficient description of many-body systems with Matrix Product Density Operators
论文作者
论文摘要
矩阵产品状态构成了强大的仿真方法在一个维度中解决基态问题的基础。他们的权力源于他们忠实地以“区域法”纠缠较低的状态忠实地近似状态。在这项工作中,我们建立了该结果的混合状态类似物:我们表明,通过纯化纠缠量量化的一维混合状态可以通过矩阵产品密度运算符(MPDOS)有效地近似。结合确定热状态的面积法律的结果,这有助于将MPDO的使用在模拟的热状态下在正式的基础上。
Matrix Product States form the basis of powerful simulation methods for ground state problems in one dimension. Their power stems from the fact that they faithfully approximate states with a low amount of entanglement, the "area law". In this work, we establish the mixed state analogue of this result: We show that one-dimensional mixed states with a low amount of entanglement, quantified by the entanglement of purification, can be efficiently approximated by Matrix Product Density Operators (MPDOs). In combination with results establishing area laws for thermal states, this helps to put the use of MPDOs in the simulation of thermal states on a formal footing.