论文标题
自我隔离或边界关闭:什么阻止流行病蔓延更好?
Self-isolation or borders closing: what prevents epidemic spreading better?
论文作者
论文摘要
Covid-19在世界上的大流行分布激励我们讨论网络聚类和适应性对流行病扩散的综合影响。我们解决了有关在连接网络中最有效的禁止疾病传播的最佳机制选择的问题:自适应聚类,它们模仿当地社区中的自我隔离(SI)或急剧的即时聚类,看起来像是在城市和国家之间的边界关闭(FC)。在整个网络中,Si-Networks是“自适应生长的”,而整个网络中小集团的最大化条件是“立即创建”的FC-Networks。在聚类的SI-和FC-NETWORKS上运行标准的SIR模型,我们证明自适应网络聚类禁止与具有相似参数的网络中的即时聚类相比,流行病的传播更好。我们发现SI模型具有用于度分布的无尺度属性$ p(k)\ sim k^η$,带有小关键指数$ -2 <η<-1 $,并认为由于初始度分布的随机性而出现,并且不存在随机常规图。
Pandemic distribution of COVID-19 in the world has motivated us to discuss combined effects of network clustering and adaptivity on epidemic spreading. We address the question concerning the choice of optimal mechanism for most effective prohibiting disease propagation in a connected network: adaptive clustering, which mimics self-isolation (SI) in local communities, or sharp instant clustering, which looks like frontiers closing (FC) between cities and countries. SI-networks are "adaptively grown" under condition of maximization of small cliques in the entire network, while FC-networks are "instantly created". Running the standard SIR model on clustered SI- and FC-networks, we demonstrate that the adaptive network clustering prohibits the epidemic spreading better than the instant clustering in the network with similar parameters. We found that SI model has scale-free property for degree distribution $P(k)\sim k^η$ with small critical exponent $-2<η<-1$ and argue that scale-free behavior emerges due to the randomness in the initial degree distributions and is absent for random regular graphs.