论文标题
lim:通过指标保存先验学习潜在形状表示
LIMP: Learning Latent Shape Representations with Metric Preservation Priors
论文作者
论文摘要
在本文中,我们主张采用度量保护作为学习可变形3D形状的潜在表示的有力先验。我们构建的关键是引入直接在解码形状上定义的几何失真标准,将电量在解码上的保存转化为基础潜在空间中线性路径的形成。我们的理由在于这样的观察,即仅培训样品通常不足以赋予具有高忠诚的生成模型,从而激发了对大型培训数据集的需求。相比之下,度量保存提供了一种严格的方法来控制潜在空间构造中产生的几何变形量,从而导致了质量更高的合成样本。我们进一步证明,在大地测量损失的反向传播中,采用了可区分的内在距离。在稀缺培训数据的存在下,我们的几何先验尤其重要,其中学习任何有意义的潜在结构都可能特别具有挑战性。我们的生成模型的有效性和潜力在样式转移,内容产生和形状完成的应用中展示。
In this paper, we advocate the adoption of metric preservation as a powerful prior for learning latent representations of deformable 3D shapes. Key to our construction is the introduction of a geometric distortion criterion, defined directly on the decoded shapes, translating the preservation of the metric on the decoding to the formation of linear paths in the underlying latent space. Our rationale lies in the observation that training samples alone are often insufficient to endow generative models with high fidelity, motivating the need for large training datasets. In contrast, metric preservation provides a rigorous way to control the amount of geometric distortion incurring in the construction of the latent space, leading in turn to synthetic samples of higher quality. We further demonstrate, for the first time, the adoption of differentiable intrinsic distances in the backpropagation of a geodesic loss. Our geometric priors are particularly relevant in the presence of scarce training data, where learning any meaningful latent structure can be especially challenging. The effectiveness and potential of our generative model is showcased in applications of style transfer, content generation, and shape completion.