论文标题

基于移动视野的EV充电的最佳计划:一种电源系统认知方法

Moving horizon-based optimal scheduling of EV charging: A power system-cognizant approach

论文作者

Sahani, Nitasha, Singh, Manish Kumar, Liu, Chen-Ching

论文摘要

插电式电动汽车(PEV)的快速升级及其不协调的充电模式在配电系统操作中构成了一些挑战。一些不良的效果包括变压器的过载,快速电压波动以及电压以下。尽管这损害了消费者的电源质量,但它也给当地电压控制设备带来了额外的压力。这些挑战的需求要求在社区中为PEVS采用协调良好的电力网络感知收费方法。本文将实时的电动汽车充电调度问题制定为混合企业线性计划(MILP)。问题是由聚合者解决的,该聚合可以在住宅社区提供收费服务。提议的配方最大化聚合器的利润,增强了可用基础架构的利用。在先前了解负载需求和小时电价的情况下,该算法采用了移动时间范围优化方法,从而使到达未知的车辆数量。在这种现实的环境中,提出的框架可确保满足电源系统约束,并保证规定时间内的PEV充电水平。 IEEE 13节点馈线系统上的数值测试证明了所提出的MILP技术的计算和性能优越性。

The rapid escalation in plug-in electric vehicles (PEVs) and their uncoordinated charging patterns pose several challenges in distribution system operation. Some of the undesirable effects include overloading of transformers, rapid voltage fluctuations, and over/under voltages. While this compromises the consumer power quality, it also puts on extra stress on the local voltage control devices. These challenges demand for a well-coordinated and power network-aware charging approach for PEVs in a community. This paper formulates a real-time electric vehicle charging scheduling problem as an mixed-integer linear program (MILP). The problem is to be solved by an aggregator, that provides charging service in a residential community. The proposed formulation maximizes the profit of the aggregator, enhancing the utilization of available infrastructure. With a prior knowledge of load demand and hourly electricity prices, the algorithm uses a moving time horizon optimization approach, allowing the number of vehicles arriving unknown. In this realistic setting, the proposed framework ensures that power system constraints are satisfied and guarantees desired PEV charging level within stipulated time. Numerical tests on a IEEE 13-node feeder system demonstrate the computational and performance superiority of the proposed MILP technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源