论文标题

强限制虫状链的相关功能

Correlation functions for strongly confined wormlike chains

论文作者

Gard, Joel, Morrison, Greg

论文摘要

描述生物分子统计的聚合物模型在限制下具有应用于多种单分子实验技术,并深入了解生物学相关的过程{\ em {in Vivo}}。在本文中,我们使用平均野外方法来确定狭窄和圆柱体内部限制在缝隙和圆柱体内(分别有一个和两个约束维度)的蠕虫状链的横向位置和弯曲相关函数。我们显示了理论预测准确地捕获了蒙特卡洛模拟的蠕虫样链的统计数据,这两者都限制了弱和强限制的几何形状。我们还表明,针对限制缝隙的链条准确计算了纵向相关函数,并利用模型的精度提出了一种实验技术,以推断(通常是无法观察的)横向统计数据(直接可观察到的)纵向端到端端距离。

Polymer models describing the statistics of biomolecules under confinement have applications to a wide range of single molecule experimental techniques and give insight into biologically relevant processes {\em{in vivo}}. In this paper, we determine the transverse position and bending correlation functions for a wormlike chain confined within slits and cylinders (with one and two confined dimensions, respectively) using a mean field approach that enforces rigid constraints on average. We show the theoretical predictions accurately capture the statistics of a wormlike chain from Monte Carlo simulations in both confining geometries for both weak and strong confinement. We also show that the longitudinal correlation function is accurately computed for a chain confined to a slit, and leverage the accuracy of the model to suggest an experimental technique to infer the (often unobservable) transverse statistics from the (directly observable) longitudinal end-to-end distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源