论文标题

具有自适应社区共识的信函网络

Correspondence Networks with Adaptive Neighbourhood Consensus

论文作者

Li, Shuda, Han, Kai, Costain, Theo W., Howard-Jenkins, Henry, Prisacariu, Victor

论文摘要

在本文中,我们解决了在包含同一类别的对象之间建立密集的视觉对应关系的任务。这是一项艰巨的任务,这是由于较大的类内变化和缺乏密集的像素级注释。我们提出了一种称为自适应邻里共识网络(ANC-NET)的卷积神经网络架构,可以通过稀疏的密钥点注释端到端训练,以应对这一挑战。 ANC-NET的核心是我们提出的非各向异性4D卷积内核,该内核构成了适应性匹配的自适应邻里共识模块的基础。我们还引入了ANC-NET中简单有效的多尺度自相似模块,以使学习的功能可鲁棒至类内部变化。此外,我们提出了一种新型的正交损失,可以强制执行一对一的匹配约束。我们彻底评估了我们方法对各种基准测试的有效性,在各种基准测试中,它基本上要优于最先进的方法。

In this paper, we tackle the task of establishing dense visual correspondences between images containing objects of the same category. This is a challenging task due to large intra-class variations and a lack of dense pixel level annotations. We propose a convolutional neural network architecture, called adaptive neighbourhood consensus network (ANC-Net), that can be trained end-to-end with sparse key-point annotations, to handle this challenge. At the core of ANC-Net is our proposed non-isotropic 4D convolution kernel, which forms the building block for the adaptive neighbourhood consensus module for robust matching. We also introduce a simple and efficient multi-scale self-similarity module in ANC-Net to make the learned feature robust to intra-class variations. Furthermore, we propose a novel orthogonal loss that can enforce the one-to-one matching constraint. We thoroughly evaluate the effectiveness of our method on various benchmarks, where it substantially outperforms state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源