论文标题

使用力量,卢克!学会通过模拟效果来预测身体力量

Use the Force, Luke! Learning to Predict Physical Forces by Simulating Effects

论文作者

Ehsani, Kiana, Tulsiani, Shubham, Gupta, Saurabh, Farhadi, Ali, Gupta, Abhinav

论文摘要

当我们人类观看人类对象相互作用的视频时,我们不仅可以推断正在发生的事情,而且可以提取可行的信息并模仿这些相互作用。另一方面,当前的识别或几何方法缺乏动作表示的物理性。在本文中,我们迈出了对行动的进一步理解。我们解决了推断人类与物体互动视频的物理力量的问题。解决此问题的主要挑战之一是获得力量的地面标签。我们通过使用物理模拟器进行监督来避开此问题。具体而言,我们使用模拟器来预测效果并强制执行,估计的力必须带来与视频中所示的相同效果。我们的定量和定性结果表明,(a)我们可以从视频中预测有意义的力量,这些视频的效果可以准确地模仿观察到的动作,(b)通过共同优化接触点和力量预测,我们可以改善与独立训练相比的两项任务的性能,并且(c)我们可以从这种模型中从这种模型中汲取一种使用少数摄影对象的模型,从而可以从该模型中学习一个概括。

When we humans look at a video of human-object interaction, we can not only infer what is happening but we can even extract actionable information and imitate those interactions. On the other hand, current recognition or geometric approaches lack the physicality of action representation. In this paper, we take a step towards a more physical understanding of actions. We address the problem of inferring contact points and the physical forces from videos of humans interacting with objects. One of the main challenges in tackling this problem is obtaining ground-truth labels for forces. We sidestep this problem by instead using a physics simulator for supervision. Specifically, we use a simulator to predict effects and enforce that estimated forces must lead to the same effect as depicted in the video. Our quantitative and qualitative results show that (a) we can predict meaningful forces from videos whose effects lead to accurate imitation of the motions observed, (b) by jointly optimizing for contact point and force prediction, we can improve the performance on both tasks in comparison to independent training, and (c) we can learn a representation from this model that generalizes to novel objects using few shot examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源