论文标题

在正常凸模糊真实价值上重新访问2型三角形规范

Revisiting type-2 triangular norms on normal convex fuzzy truth values

论文作者

Wu, XInxing, Zhu, Zhiyi, Chen, Guanrong

论文摘要

本文研究了所有正常和凸模的真实价值的$ \ mathbf {l} $的t-norms。我们首先证明了Wu等人构建的唯一非卷积形式T-Norm。满足征服卷积的分布性法律,并表明,在沃克和沃克的意义上,t-norm严格比t $ _ {r} $ - 在$ \ mathbf {l} $上的norm- norm- norm- norm norm,这严格比在$ \ m mathbf {l} $上强的t-norm强。此外,我们表征了T $ _ {r} $的一些限制性公理 - 在$ \ Mathbf {l} $上进行卷积操作的规范,并获得了T $ _ {r} $ - (CO)NORM norm norm norm endolution Operations $ \ Mathbf {l} $。

This paper studies t-norms on the space $\mathbf{L}$ of all normal and convex fuzzy truth values. We first prove that the only non-convolution form type-2 t-norm constructed by Wu et al. satisfies the distributivity law for meet-convolution and show that t-norm in the sense of Walker and Walker is strictly stronger than t$_{r}$-norm on $\mathbf{L}$, which is strictly stronger than t-norm on $\mathbf{L}$. Furthermore, we characterize some restrictive axioms of t$_{r}$-norms for convolution operations on $\mathbf{L}$ and obtain some necessary conditions for t$_{r}$-(co)norm convolution operations on $\mathbf{L}$ .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源