论文标题

针对具有低常规溶液的Div-Curl系统的原始双重弱彩色方法

A Primal-Dual Weak Galerkin Method for Div-Curl Systems with low-regularity solutions

论文作者

Liu, Yujie, Wang, Junping

论文摘要

本文为DIV-CURL系统提供了一种新的原始双重弱彩素元素方法,该方法具有切向边界条件和溶液上的低规范性假设。该数值方案基于弱变异形式,涉及在弱的galerkin有限元方法的一般环境中,在一般环境中补充了双重或a关问题的精确溶液的部分衍生物。 $ h^θ(ω),\θ> \ frac12 $中的解决方案向量字段建立了$ l^2 $中的最佳订单错误估计。数学理论衍生在具有一般拓扑特性的连接域(即任意的第一和第二Betti数字)。据报道,数值结果以确认理论收敛。

This article presents a new primal-dual weak Galerkin finite element method for the div-curl system with tangential boundary conditions and low-regularity assumptions on the solution. The numerical scheme is based on a weak variational form involving no partial derivatives of the exact solution supplemented by a dual or ajoint problem in the general context of the weak Galerkin finite element method. Optimal order error estimates in $L^2$ are established for solution vector fields in $H^θ(Ω),\ θ>\frac12$. The mathematical theory was derived on connected domains with general topological properties (namely, arbitrary first and second Betti numbers). Numerical results are reported to confirm the theoretical convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源