论文标题

超级净科学:从多维网络到计算拓扑

Hypernetwork Science: From Multidimensional Networks to Computational Topology

论文作者

Joslyn, Cliff A., Aksoy, Sinan, Callahan, Tiffany J., Hunter, Lawrence E., Jefferson, Brett, Praggastis, Brenda, Purvine, Emilie A. H., Tripodi, Ignacio J.

论文摘要

作为用于复杂系统建模的数据结构和数学对象,一方面,超图在网络模型的世界之间很好地固定在同步的世界中,另一方面是来自代数,晶格理论和拓扑的高阶数学抽象。他们能够比图形和网络更忠实地代表复杂的系统交互,同时也是代表拓扑结构的一些最简单类别的系统,作为以特定模式连接的多维对象的集合。在本文中,我们讨论了(无向)超图在复杂网络的科学中的作用,并提供了数学概述,概述了超网络建模所需的核心概念,包括二元性以及与双色图形的关系,定量邻接性和偶然性,步行性的性质,超图和可用的拓扑关系和物业。我们对两个示例应用的简要讨论结束:用于疾病分析的生物医学数据库以及网络数据的域名系统(DNS)分析。

As data structures and mathematical objects used for complex systems modeling, hypergraphs sit nicely poised between on the one hand the world of network models, and on the other that of higher-order mathematical abstractions from algebra, lattice theory, and topology. They are able to represent complex systems interactions more faithfully than graphs and networks, while also being some of the simplest classes of systems representing topological structures as collections of multidimensional objects connected in a particular pattern. In this paper we discuss the role of (undirected) hypergraphs in the science of complex networks, and provide a mathematical overview of the core concepts needed for hypernetwork modeling, including duality and the relationship to bicolored graphs, quantitative adjacency and incidence, the nature of walks in hypergraphs, and available topological relationships and properties. We close with a brief discussion of two example applications: biomedical databases for disease analysis, and domain-name system (DNS) analysis of cyber data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源