论文标题
对于Neumann或Robin边界条件的准线性椭圆方程的弱解决方案的分类和不存在的结果
Classification and non-existence results for weak solutions to quasilinear elliptic equations with Neumann or Robin boundary conditions
论文作者
论文摘要
我们将阳性解决方案分类为凸域中具有Neumann或Robin边界条件的一类准线方程。我们的主要工具是一个不可或缺的公式,涉及问题的一些相关数量的痕迹。在适当的非线性条件下,我们的结果的相关结果是,我们可以扩展到弱解决方案,这是Casten和Holland和Matano为稳定解决方案获得的著名结果。
We classify positive solutions to a class of quasilinear equations with Neumann or Robin boundary conditions in convex domains. Our main tool is an integral formula involving the trace of some relevant quantities for the problem. Under a suitable condition on the nonlinearity, a relevant consequence of our results is that we can extend to weak solutions a celebrated result obtained for stable solutions by Casten and Holland and by Matano.