论文标题

对角线反射对称性和通用四零纹理

Diagonal reflection symmetries and universal four-zero texture

论文作者

Yang, Masaki J. S.

论文摘要

在本文中,我们考虑了SM中的一组新对称性,对角线反射} symmeties $ r \,m_ {u,v}^{*} \,r = m_ {u,n {这些广义$ cp $ symmetries预测majoraana阶段为$α_{2,3} /2 \ sim 0 $或$π/2 $。 反射对称性的实现表明,手性$ u(1)_ {\ rm pq} $对称性和调味轴。建议将轴刻度为$ \langleθ_{u,d} \ rangle \simλ_{\ rm gut} \,\ sqrt {m_ {m_ {u,d} \,m_ {c,s}}}}}}}}}}}} / v \ sim 10^{12} {12} {12} {gev] 通过将对称性与四零纹理相结合,可以很好地再现夸克和叶子的质量特征值和混合矩阵。该方案预测了普通层次结构,dirac阶段$δ_{cp} \ simeq 203^{\ circ},$和$ | m_ {1} | \ simeq 2.5 $或$ 6.2 \,$ [MEV]。 在此方案中,I型Seesaw机制和给定的中微子Yukawa矩阵$y_ν$完全确定了右手中微子质量$ M_ {R} $的结构。一个$ u-ν$统一预测大众特征值为$(m_ {r1} \,,m_ {r2} \,,m_ {r3})=(o(o(10^{5})\,,,o(10^{9} {9})

In this paper, we consider a set of new symmetries in the SM, {\it diagonal reflection} symmetries $R \, m_{u,ν}^{*} \, R = m_{u,ν}, ~ m_{d,e}^{*} = m_{d,e}$ with $R =$ diag $(-1,1,1)$. These generalized $CP$ symmetries predict the Majorana phases to be $α_{2,3} /2 \sim 0$ or $π/2$. A realization of reflection symmetries suggests a broken chiral $U(1)_{\rm PQ}$ symmetry and a flavored axion. The axion scale is suggested to be $\langle θ_{u,d} \rangle \sim Λ_{\rm GUT} \, \sqrt{m_{u,d} \, m_{c,s}} / v \sim 10^{12} \, $[GeV]. By combining the symmetries with the four-zero texture, the mass eigenvalues and mixing matrices of quarks and leptons are reproduced well. This scheme predicts the normal hierarchy, the Dirac phase $δ_{CP} \simeq 203^{\circ},$ and $|m_{1}| \simeq 2.5$ or $6.2 \, $[meV]. In this scheme, the type-I seesaw mechanism and a given neutrino Yukawa matrix $Y_ν$ completely determine the structure of right-handed neutrino mass $M_{R}$. An $u-ν$ unification predicts mass eigenvalues to be $ (M_{R1} \, , M_{R2} \, , M_{R3}) = (O (10^{5}) \, , O (10^{9}) \, , O (10^{14})) \, $[GeV].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源