论文标题
多层备忘录的突触网络中的塑性性
Metaplasticity in Multistate Memristor Synaptic Networks
论文作者
论文摘要
最近的研究表明,转移突触比简单的二进制突触可以保留更长的信息,并且对持续学习是有益的。在本文中,我们在高保留和接受信息的背景下探讨了多层化学突触特征。模仿多层突触的备忘录的固有行为用于捕获化生行为。通过将Synapse集成到电路级别的$ 5 \ times3 $ crossbar和$ 128 \ times128 $网络在建筑层面上,可以进行学习和记忆保留的集成神经网络研究。设备训练电路可确保网络中的动态学习。在$ 128 \ times128 $网络中,可以观察到,多音阶突触可以分类为$ \ simeq $ 2.1倍的输入模式的数量,该模型的平均准确性为$ \ geq $ 75%。
Recent studies have shown that metaplastic synapses can retain information longer than simple binary synapses and are beneficial for continual learning. In this paper, we explore the multistate metaplastic synapse characteristics in the context of high retention and reception of information. Inherent behavior of a memristor emulating the multistate synapse is employed to capture the metaplastic behavior. An integrated neural network study for learning and memory retention is performed by integrating the synapse in a $5\times3$ crossbar at the circuit level and $128\times128$ network at the architectural level. An on-device training circuitry ensures the dynamic learning in the network. In the $128\times128$ network, it is observed that the number of input patterns the multistate synapse can classify is $\simeq$ 2.1x that of a simple binary synapse model, at a mean accuracy of $\geq$ 75% .