论文标题
Markov和Lagrange光谱在1/T中的Laurent系列具有合理系数
Markov and Lagrange Spectra for Laurent series in 1/T with rational coefficients
论文作者
论文摘要
正式的劳伦(Laurent)系列的领域是实际数字的自然类似物,数学家一直在翻译有关该环境理性近似值的众所周知的结果。在电力序列的框架上,我们定义和研究了与非理性的二聚体近似和马尔可夫光谱有关的拉格朗日光谱,以及与无限二进制二进制二进制形式相关的Markov Spectrum。我们明确计算两个光谱,并表明它们重合和没有差距,这与实际发生的情况相反。
The field of formal Laurent series is a natural analogue of the real numbers, and mathematicians have been translating well-known results about rational approximations to that setting. In the framework of power series over the rational numbers, we define and study the Lagrange spectrum, related to Diophantine approximation of irrationals, and the Markov spectrum, related to representation by indefinite binary quadratic forms. We compute both spectra explicitly, and show that they coincide and exhibit no gaps, contrary to what happens over the reals.