论文标题

多行星系统中的过境持续时间变化

Transit Duration Variations in Multi-Planet Systems

论文作者

Boley, Aaron C., Van Laerhoven, Christa, Contreras, Agueda Paula Granados

论文摘要

行星相对于观察者的视线的轨道取向决定了过境行星的和弦长度,即投射的距离横跨恒星圆盘。对于给定的圆形轨道,和弦长度决定了过境持续时间。轨道倾斜度的变化,上升节点或两者兼有的方向会改变该和弦长度,从而导致过境持续时间变化(TDVS)。完整的轨道倾斜矢量的变化甚至可以导致系统去拖运或新的过渡行星。我们使用Laplace-Lagrange世俗理论来估计100多个短期行星系统的最快的淋巴结特征频。最高的本本频率是哪些系统应显示最强的TDV的指标。我们进一步探索了使用直接N体模拟的五个病例(Trappist-1,Kepler-11,K2-138,Kepler-445和Kepler-334),以表征可能的TDV,并探索这些系统是否可以进行De-Transing Planets。探索了一系列初始条件,每个实现与观察到的转运术一致。我们发现,数百分之几的多平台系统具有足够快的本征频率,可以预期十年时间内的TDV。在直接整合的案例中,我们发现可以在十年的时间尺度上发生去拖运行星,而每十年10分钟的TDV应该是常见的。

A planet's orbital orientation relative to an observer's line of sight determines the chord length for a transiting planet, i.e., the projected distance a transiting planet travels across the stellar disc. For a given circular orbit, the chord length determines the transit duration. Changes in the orbital inclination, the direction of the ascending node, or both, can alter this chord length and thus result in transit duration variations (TDVs). Variation of the full orbital inclination vector can even lead to de-transiting or newly transiting planets for a system. We use Laplace-Lagrange secular theory to estimate the fastest nodal eigenfrequencies for over 100 short-period planetary systems. The highest eigenfrequency is an indicator of which systems should show the strongest TDVs. We further explore five cases (TRAPPIST-1, Kepler-11, K2-138, Kepler-445, and Kepler-334) using direct N-body simulations to characterize possible TDVs and to explore whether de-transiting planets could be possible for these systems. A range of initial conditions are explored, with each realization being consistent with the observed transits. We find that tens of percent of multiplanet systems have fast enough eigenfrequencies to expect large TDVs on decade timescales. Among the directly integrated cases, we find that de-transiting planets could occur on decade timescales and TDVs of 10 minutes per decade should be common.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源