论文标题

关于kleinian奇异性变形的可用单位化的harish-chandra双模型

On unitarizable Harish-Chandra bimodules for deformations of Kleinian singularities

论文作者

Klyuev, Daniil

论文摘要

Harish-Chandra Bimodule的概念,即有限生成的$ U(\ Mathfrak {g})$ - 具有本地有限的伴随动作的Bimodule,在Lossev [Ivan Lossev的工作中都被概括为任何过滤的代数[Ivan Lossev [ivan Losseve,不可误解的模块,而不是W-Elgebras和GoldEie and goldie and goldie Sarks。 ARXIV:1209.1083]。与经典案例类似,我们可以定义可单位化的双模模的概念。我们调查了一个问题,即常规双模模,即代数本身,以使$ a $的kleinian奇异性变形。我们获得了可分别定期双模型的部分分类。

The notion of a Harish-Chandra bimodule, i.e. finitely generated $U(\mathfrak{g})$-bimodule with locally finite adjoint action, was generalized to any filtered algebra in a work of Losev [Ivan Losev, Dimensions of irreducible modules over W-algebras and Goldie ranks. arXiv:1209.1083]. Similarly to the classical case we can define the notion of a unitarizable bimodule. We investigate a question when the regular bimodule, i.e. the algebra itself, for a deformation of Kleinian singularity of type $A$ is unitarizable. We obtain a partial classification of unitarizable regular bimodules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源