论文标题

PIP:自动驾驶的计划信息轨迹预测

PiP: Planning-informed Trajectory Prediction for Autonomous Driving

论文作者

Song, Haoran, Ding, Wenchao, Chen, Yuxuan, Shen, Shaojie, Wang, Michael Yu, Chen, Qifeng

论文摘要

至关重要的是要预测周围车辆进行自动驾驶计划的运动,尤其是以一种社会符合和灵活的方式。但是,由于驾驶行为的相互作用和不确定性,未来的预测是具有挑战性的。我们提出了计划信息的轨迹预测(PIP),以解决多代理设置中的预测问题。我们的方法与传统的预测方式有所不同,该预测仅基于历史信息并与计划脱在一起。通过使用EGO车辆的规划来告知预测过程,我们的方法实现了高速公路数据集上多代理预测的最先进性能。此外,我们的方法可以通过对自我车辆的多个候选轨迹进行调节,从而使预测和计划结合起来,这对在交互式场景中的自动驾驶非常有益。

It is critical to predict the motion of surrounding vehicles for self-driving planning, especially in a socially compliant and flexible way. However, future prediction is challenging due to the interaction and uncertainty in driving behaviors. We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting. Our approach is differentiated from the traditional manner of prediction, which is only based on historical information and decoupled with planning. By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets. Moreover, our approach enables a novel pipeline which couples the prediction and planning, by conditioning PiP on multiple candidate trajectories of the ego vehicle, which is highly beneficial for autonomous driving in interactive scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源