论文标题

粘度问题的水波的适合性

Well-posedness of the water-wave with viscosity problem

论文作者

Granero-Belinchón, Rafael, Scrobogna, Stefano

论文摘要

在本文中,我们研究了具有粘度的表面重力波的运动。特别是我们证明了两个适当的结果。一方面,我们在Sobolev空间中建立了局部溶解度,以进行任意耗散。另一方面,我们在维纳(Wiener)空间中建立了全球良好的稳定性,具有足够大的粘度。这些结果是DIAS,Dyachenko \&Zakharov System({\ em Physics Letters A} 2008)的第一个严格证明,当未考虑表面张力时,将重力波建模为粘度。

In this paper we study the motion of a surface gravity wave with viscosity. In particular we prove two well-posedness results. On the one hand, we establish the local solvability in Sobolev spaces for arbitrary dissipation. On the other hand, we establish the global well-posedness in Wiener spaces for a sufficiently large viscosity. These results are the first rigorous proofs of well-posedness for the Dias, Dyachenko \& Zakharov system ({\em Physics Letters A} 2008) modelling gravity waves with viscosity when surface tension is not taken into account.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源