论文标题

通过尺寸降低,在二维系统中解决对称性的纠缠

Symmetry resolved entanglement in two-dimensional systems via dimensional reduction

论文作者

Murciano, Sara, Ruggiero, Paola, Calabrese, Pasquale

论文摘要

我们通过\ emph {dimensional降低}报告了对对称性解决的对称性纠缠熵的计算。当子系统在横向方向上是转化的不变性时,该策略使我们能够将初始二维问题减少到混合空间摩托车表示中的一维脱钩的一维问题中。虽然这个想法直接适用于任何尺寸$ d $,但在这里我们关注的是$ d = 2 $,并为两个具有$ u(1)$对称性的晶格模型提供明确的表达,即免费的非权利性无质量的无质量幻子和自由复合物和自由复合物(巨大和无数)。尽管我们的重点是对称性解决的熵,但总纠缠的一些结果也是新的。我们的派生对$ d \ geq2 $中的无质量玻色子和费米子之间众所周知的不同行为有透明的理解:无质量的费米子呈现出对该区域的对数违规,而不是严格地适用于玻色子,甚至是无质量的。对于总计和对称性解决的熵都是正确的。有趣的是,我们发现将纠缠到不同对称部门的纠缠方向在子系统大小的领先顺序上也有两个维度。我们确定两个系统的第一个学期打破它。我们所有的发现均针对玻色子和费米子的晶格模型中的精确数值计算进行了定量测试。

We report on the calculation of the symmetry resolved entanglement entropies in two-dimensional many-body systems of free bosons and fermions by \emph{dimensional reduction}. When the subsystem is translational invariant in a transverse direction, this strategy allows us to reduce the initial two-dimensional problem into decoupled one-dimensional ones in a mixed space-momentum representation. While the idea straightforwardly applies to any dimension $d$, here we focus on the case $d=2$ and derive explicit expressions for two lattice models possessing a $U(1)$ symmetry, i.e., free non-relativistic massless fermions and free complex (massive and massless) bosons. Although our focus is on symmetry resolved entropies, some results for the total entanglement are also new. Our derivation gives a transparent understanding of the well known different behaviours between massless bosons and fermions in $d\geq2$: massless fermions presents logarithmic violation of the area which instead strictly hold for bosons, even massless. This is true both for the total and the symmetry resolved entropies. Interestingly, we find that the equipartition of entanglement into different symmetry sectors holds also in two dimensions at leading order in subsystem size; we identify for both systems the first term breaking it. All our findings are quantitatively tested against exact numerical calculations in lattice models for both bosons and fermions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源