论文标题

温带电流的浓汤

A Dolbeault lemma for temperate currents

论文作者

Skoda, Henri

论文摘要

我们考虑了一个复杂的Stein歧管$ x $ dimension $ n $的有界开放式Stein子集$ω$。我们证明,如果$ f $是$ x $ bidegree $(p,q+1)$,$ \ bar \ partial $ clucted在$ω$上的$,我们可以在$ x $ bidegree $(p,q)上找到当前的$ u $(p,q)$,这是等式$ \ bar \ bar \ poartial u = f $ in $ = f $的解决方案。换句话说,我们证明了$ω$上的温带电流的多尔贝特综合体(即$ω$的电流延伸到$ x $上的电流)集中在度数$ 0 $中。此外,如果$ f $是$ x = c^n $的当前订单$ k $,那么我们可以找到一个解决方案$ u $,这是$ k+2n+1 $的$ c^n $上的当前。

We consider a bounded open Stein subset $Ω$ of a complex Stein manifold $X$ of dimension $n$. We prove that if $f$ is a current on $X$ of bidegree $(p,q+1)$, $\bar\partial$-closed on $Ω$, we can find a current $u$ on $X$ of bidegree $(p,q)$ which is a solution of the equation $\bar\partial u=f$ in $Ω$. In other words, we prove that the Dolbeault complex of temperate currents on $Ω$ (i.e. currents on $Ω$ which extend to currents on $X$) is concentrated in degree $0$. Moreover if $f$ is a current on $X= C^n$ of order $k$, then we can find a solution $u$ which is a current on $C^n$ of order $k+2n+1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源