论文标题
$γ^* n \rightarrowΔ^{+}(1600)$过渡形式在轻键总和规则中
$γ^* N \rightarrow Δ^{+}(1600)$ transition form factors in light-cone sum rules
论文作者
论文摘要
$γ^* n \rightArrowδ(1600)$过渡的形式因子在轻单和规则中计算出,假设$δ^+(1600)$是$δ(1232)$的第一个径向激发。电磁偶极$ \ tilde {g} _m(q^2)$的$ q^2 $依赖性,electric Quadrupole $ \ tilde {g} _e(q^2)$和coulomb Quadrupole $ \ tilde {g} _c(q^2)$。此外,$ q^2 $依赖性$ r_ {em} = - \ frac {\ tilde {g} _e(q^2)} {\ tilde {g} _m {q^2}}} $ \ sqrt {4 m_ {δ(1600)}^2 q^2 +(m_ {δ(1600)}^2 -q^2 -q^2 -m_n^2)^2} \ frac {\ frac {\ tilde {g} _c(q^2)}}最后,我们对$ \ tilde {g} _m(q^2)$,$ \ tilde {g} _e(q^2)$和$ \ tilde {g} _c(q^2)$的预测是与其他理论方法的结果进行了比较的。
The form factors of $γ^* N \rightarrow Δ(1600)$ transition is calculated within the light-cone sum rules assuming that $Δ^+(1600)$ is the first radial excitation of $Δ(1232)$. The $Q^2$ dependence of the magnetic dipole $\tilde{G}_M(Q^2)$, electric quadrupole $\tilde{G}_E(Q^2)$, and Coulomb quadrupole $\tilde{G}_c(Q^2)$ form factors are investigated. Moreover, the $Q^2$ dependence of the ratios $R_{EM} = -\frac{\tilde{G}_E(Q^2)}{\tilde{G}_M{Q^2}}$ and $R_{SM} = - \frac{1}{4 m_{Δ(1600)}^2} \sqrt{4 m_{Δ(1600)}^2 Q^2 + (m_{Δ(1600)}^2 - Q^2 - m_N^2)^2} \frac{\tilde{G}_c(Q^2)}{\tilde{G}_M(Q^2)}$ are studied. Finally, our predictions on $\tilde{G}_M(Q^2)$, $\tilde{G}_E(Q^2)$, and $\tilde{G}_C(Q^2)$ are compared with the results of other theoretical approaches.