论文标题

基于首选项的MPC校准

Preference-based MPC calibration

论文作者

Zhu, Mengjia, Bemporad, Alberto, Piga, Dario

论文摘要

通过全局优化自动化控制策略的参数的校准需要量化闭环性能函数。由于在许多情况下这可能是不切实际的,因此在本文中,我们建议一种半自动化的校准方法,需要一种人类校准器来表达对某些控制策略是否比另一个人“更好”的偏爱,因此消除了对显式性能指数的需求。特别是,我们将注意力集中在模型预测控制器(MPC)的半自动校准上,为此,我们尝试通过采用最近开发的基于主动优先优先优化算法GLISP来计算最佳校准参数集。基于人类操作员表达的偏好,Glisp了解了校准器(不自觉地)使用和提出的基础闭环性能指数的替代品,这是对他或她的一组新的校准参数,用于测试,以进行测试,以对先前的实验结果进行比较。在两个案例研究上测试了所得的半自动校准程序,显示了该方法在有限数量的实验中实现近乎最佳性能的能力。

Automating the calibration of the parameters of a control policy by means of global optimization requires quantifying a closed-loop performance function. As this can be impractical in many situations, in this paper we suggest a semi-automated calibration approach that requires instead a human calibrator to express a preference on whether a certain control policy is "better" than another one, therefore eliminating the need of an explicit performance index. In particular, we focus our attention on semi-automated calibration of Model Predictive Controllers (MPCs), for which we attempt computing the set of best calibration parameters by employing the recently-developed active preference-based optimization algorithm GLISp. Based on the preferences expressed by the human operator, GLISp learns a surrogate of the underlying closed-loop performance index that the calibrator (unconsciously) uses and proposes, iteratively, a new set of calibration parameters to him or her for testing and for comparison against previous experimental results. The resulting semi-automated calibration procedure is tested on two case studies, showing the capabilities of the approach in achieving near-optimal performance within a limited number of experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源