论文标题
使用椭圆网算法的$ 128 $,$ 192 $和256美元的安全级别的最佳ATE加密配对的平行计算
Parallel Computation of Optimal Ate Cryptographic Pairings at the $128$, $192$ and $256$-bit security levels using elliptic net algorithm
论文作者
论文摘要
由于密码学中的许多应用,与Miller算法配对的有效计算最近受到了极大的关注。在这项工作中,我们为与扭曲的Barreto-Naehrig(BN)曲线相关的椭圆网配对提供了公式$ 54 $。我们展示了如何使用椭圆网算法的计算,而是使用椭圆网算法的计算,除了Kachisa-Schaefer-Scott(KSS)曲线以256美元的$ 256 $ -BIT安全水平,与Miller Algorithm相比,除了$ 256的理论结果,我们将获得除外,除了Kachisa-Schaefer-Scott(KSS)曲线以$ 256 $ - bit的安全水平,更有效的理论结果。这项工作仍然证实,$ bls48 $曲线对于基于$ 256 $的安全级别\ cite {nardiefo19}的最佳配对密码学是最好的。
Efficient computations of pairings with Miller Algorithm have recently received a great attention due to the many applications in cryptography. In this work, we give formulae for the optimal Ate pairing in terms of elliptic nets associated to twisted Barreto-Naehrig (BN) curve, Barreto-Lynn-Scott(BLS) curves and Kachisa-Schaefer-Scott(KSS) curves considered at the $128$, $192$ and $256$-bit security levels, and Scott-Guillevic curve with embedding degree $54$. We show how to parallelize the computation of these pairings when the elliptic net algorithm instead is used and we obtain except in the case of Kachisa-Schaefer-Scott(KSS) curves considered at the $256$-bit security level, more efficient theoretical results with $8$ processors compared to the case where the Miller algorithm is used. This work still confirms that $BLS48$ curves are the best for pairing-based cryptography at $256$-bit security level \cite{NARDIEFO19}.