论文标题

内容自适应和错误传播意识到深度视频压缩

Content Adaptive and Error Propagation Aware Deep Video Compression

论文作者

Lu, Guo, Cai, Chunlei, Zhang, Xiaoyun, Chen, Li, Ouyang, Wanli, Xu, Dong, Gao, Zhiyong

论文摘要

最近,基于学习的视频压缩方法引起了越来越多的关注。但是,由于预测性编码中重建错误的积累,先前的作品遭受了错误传播。同时,以前的基于学习的视频编解码器也不适合不同的视频内容。为了解决这两个问题,我们提出了一个内容自适应和错误传播的视频压缩系统。具体而言,我们的方法通过考虑多个连续帧而不是单个帧的压缩性能来采用联合培训策略。基于学习的长期时间信息,我们的方法有效地减轻了重建框架中的错误传播。更重要的是,我们设计了系统中的在线编码器更新方案,而不是在传统压缩系统中使用手工制作的编码模式。所提出的方法根据速率延伸标准更新编码器的参数,但在推理阶段保持解码器不变。因此,编码器可以适应不同的视频内容,并通过减少培训和测试数据集之间的域间隙来实现更好的压缩性能。我们的方法简单而有效,并且在基准数据集上胜过基于最新学习的视频编解码器而不增加模型大小或降低解码速度。

Recently, learning based video compression methods attract increasing attention. However, the previous works suffer from error propagation due to the accumulation of reconstructed error in inter predictive coding. Meanwhile, the previous learning based video codecs are also not adaptive to different video contents. To address these two problems, we propose a content adaptive and error propagation aware video compression system. Specifically, our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame. Based on the learned long-term temporal information, our approach effectively alleviates error propagation in reconstructed frames. More importantly, instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system. The proposed approach updates the parameters for encoder according to the rate-distortion criterion but keeps the decoder unchanged in the inference stage. Therefore, the encoder is adaptive to different video contents and achieves better compression performance by reducing the domain gap between the training and testing datasets. Our method is simple yet effective and outperforms the state-of-the-art learning based video codecs on benchmark datasets without increasing the model size or decreasing the decoding speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源