论文标题

具有有界匹配号码的图形的复合物数量

Leray numbers of complexes of graphs with bounded matching number

论文作者

Holmsen, Andreas F., Lee, Seunghun

论文摘要

给定顶点套装$ v $的图$ g $,$ g $,$ \ mathsf {nm} _k(g)$的非匹配络合物是子级$ g'\子集g $的家族,其匹配的数字$ nmumb $ nmumbs $ nmumn $ nmund $ nmubs $ nmubs $ nmubs $ nment $ k $严格少于$ k $。为了试图概括linusson,shareshian和welker的$ \ mathsf {nm} _k(k_n)$和$ \ m athsf {nm} _k(k__ {k_ {r,s})$ to nutagry Graphs $ g $,我们显示(我们)$ \ mathssf \ g $ g $ \ mathsf \ $(3K-3)$ - leray,(ii)如果$ g $是双方,则$ \ m athsf {nm} _k(g)$是$(2K-2)$ - leray。通过分析复杂的$ \ mathsf {nm} _K(g)$的非空面条的链接的同源性来获得该结果,该链接在所有方面都消失了$ d \ geq 3k-4 $,以及所有尺寸$ d \ d \ d \ d \ degq 2k-3 $当$ g $ g $ g $ bipArtite时。作为推论,我们具有以下彩虹匹配的定理,该定理概括了Aharoni,Berger,Chudnovsky,Chudnovsky,Howard和Seymour:Let $ e_1,\ dots,e_ {3k-2} $是图形的非超级边缘子集,并假设$ ne ne ne ne $ n ne $ν(e_i \ cup e_j $ j $ $ $ $然后,$ e = \ bigcup e_i $具有大小$ k $的彩虹匹配。此外,当$ e $是两部分图的边缘集时,边缘集$ e_i $的数量可以减少到$ 2K-1 $。

Given a graph $G$ on the vertex set $V$, the non-matching complex of $G$, $\mathsf{NM}_k(G)$, is the family of subgraphs $G' \subset G$ whose matching number $ν(G')$ is strictly less than $k$. As an attempt to generalize the result by Linusson, Shareshian and Welker on the homotopy types of $\mathsf{NM}_k(K_n)$ and $\mathsf{NM}_k(K_{r,s})$ to arbitrary graphs $G$, we show that (i) $\mathsf{NM}_k(G)$ is $(3k-3)$-Leray, and (ii) if $G$ is bipartite, then $\mathsf{NM}_k(G)$ is $(2k-2)$-Leray. This result is obtained by analyzing the homology of the links of non-empty faces of the complex $\mathsf{NM}_k(G)$, which vanishes in all dimensions $d\geq 3k-4$, and all dimensions $d \geq 2k-3$ when $G$ is bipartite. As a corollary, we have the following rainbow matching theorem which generalizes the result by Aharoni, Berger, Chudnovsky, Howard and Seymour: Let $E_1, \dots, E_{3k-2}$ be non-empty edge subsets of a graph and suppose that $ν(E_i\cup E_j)\geq k$ for every $i\ne j$. Then $E=\bigcup E_i$ has a rainbow matching of size $k$. Furthermore, the number of edge sets $E_i$ can be reduced to $2k-1$ when $E$ is the edge set of a bipartite graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源