论文标题

仪表理论中的真正dilatons

Genuine Dilatons in Gauge Theories

论文作者

Crewther, R. J.

论文摘要

真正的dilaton $σ$即使在确切的保形不变性的极限中也可以存在。在规格的理论中,这些可能发生在红外固定点(IRFP)$α_ {\ text {ir}} $通过尺寸变速器。这些以$α_ {\ text {ir}} $的大尺度可以与由$θ^μ_μ$(能量 - 摩托张量的痕迹)产生的小尺度分开。对于量子染色体动力学(QCD),可以将共形限制与手性$ su(3)\ times su(3)$对称性结合使用,以产生手性尺寸扰动理论$χ$ pt $_σ$,$ f_0(500)(500)$作为Dilaton。 Technicolor(TC)类似物的类似物是爬行的TC:在低能的情况下,量规耦合$α$直接转到(但不会走过)$α_ {\ text {ir}} $,而无质量的dilaton则在$α__ {\ text {\ ir} $ sims $ aints $ aints $ aints $ aint aT aT aT aT aT aT aT aing boson α_ {\ text {ir}} $。建议$ w^\ pm $和$ z^0 $ bosons设置了希格斯玻色子质量的规模。与爬行的TC不同,在步行TC中,$θ^μ_μ$产生了$ scales $ scales,大小,因此很难说它的``dialatonic''''Higgs Boson候选者并不沉重。

A genuine dilaton $σ$ allows scales to exist even in the limit of exact conformal invariance. In gauge theories, these may occur at an infrared fixed point (IRFP) $α_{\text{IR}}$ through dimensional transmutation. These large scales at $α_{\text{IR}}$ can be separated from small scales produced by $θ^μ_μ$, the trace of the energy-momentum tensor. For quantum chromodynamics (QCD), the conformal limit can be combined with chiral $SU(3) \times SU(3)$ symmetry to produce chiral-scale perturbation theory $χ$PT$_σ$, with $f_0(500)$ as the dilaton. The technicolor (TC) analogue of this is crawling TC: at low energies, the gauge coupling $α$ goes directly to (but does not walk past) $α_{\text{IR}}$, and the massless dilaton at $α_{\text{IR}}$ corresponds to a light Higgs boson at $α\lesssim α_{\text{IR}}$. It is suggested that the $W^\pm$ and $Z^0$ bosons set the scale of the Higgs boson mass. Unlike crawling TC, in walking TC, $θ^μ_μ$ produces $all$ scales, large and small, so it is hard to argue that its ``dilatonic'' candidate for the Higgs boson is not heavy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源