论文标题

在时间依赖的哈密顿量下进化的连续量子误差校正

Continuous quantum error correction for evolution under time-dependent Hamiltonians

论文作者

Atalaya, J., Zhang, S., Niu, M. Y., Babakhani, A., Chan, H. C. H., Epstein, J., Whaley, K. B.

论文摘要

我们使用三个Qubit Bit Flip Code和BIT FLIP错误作为一个规范的示例,开发了用于纠正量子错误的连续操作,以纠正纠正代码以保护相干演变。为了实时检测错误,我们会从连续测量错误综合征操作员的连续测量中过滤输出信号,并使用双阈值协议进行错误诊断,同时进行错误校正,如常规操作中所做的。我们通过在指定的最终时间最大化目标和实际逻辑状态之间的保真度来优化量子内存和量子退火下进化的连续操作协议。在量子内存的情况下,我们表明我们的连续操作协议产生的逻辑错误率略大于使用最佳Wonham滤波器进行错误诊断而获得的逻辑错误率。我们协议的优点是它可以更简单地实现。对于量子退火,我们表明,当连续测量相对于时间依赖性的哈密顿量的强度,我们的连续量子误差校正方案可以显着降低最终逻辑状态的不忠,并且相对于经典编码的时间相对于时间依赖的哈密顿量的强度足够强。这些结果表明,连续实施适用于在编码时间依赖的汉密尔顿人的存在下进行量子误差校正,从而在量子模拟和量子退火中开放了许多应用的可能性。

We develop a protocol for continuous operation of a quantum error correcting code for protection of coherent evolution due to an encoded Hamiltonian against environmental errors, using the three qubit bit flip code and bit flip errors as a canonical example. To detect errors in real time, we filter the output signals from continuous measurement of the error syndrome operators and use a double thresholding protocol for error diagnosis, while correction of errors is done as in the conventional operation. We optimize our continuous operation protocol for evolution under quantum memory and under quantum annealing, by maximizing the fidelity between the target and actual logical states at a specified final time. In the case of quantum memory we show that our continuous operation protocol yields a logical error rate that is slightly larger than the one obtained from using the optimal Wonham filter for error diagnosis. The advantage of our protocol is that it can be simpler to implement. For quantum annealing, we show that our continuous quantum error correction protocol can significantly reduce the final logical state infidelity when the continuous measurements are sufficiently strong relative to the strength of the time-dependent Hamiltonian, and that it can also significantly reduces the run time relative to that of a classical encoding. These results suggest that a continuous implementation is suitable for quantum error correction in the presence of encoded time-dependent Hamiltonians, opening the possibility of many applications in quantum simulation and quantum annealing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源