论文标题

表面映射类组的扭曲 - 金属拓扑

The twist-cofinite topology on the mapping class group of a surface

论文作者

Irmer, Ingrid

论文摘要

在紧凑连接的定向表面的映射类组上定义了拓扑。结果表明,映射类组的子集的“通用性”概念来自此定义。这个概念很容易得出许多合理的结果。例如,伪anosov图的集合被证明是通用的,可以假定具有任意的大拉伸因子。令M为从固定属G和通用胶水图的Heegaard分裂获得的3个manifold。结果表明,对于这样的歧管,通常m是双曲线,首先具有betti数为零,而Heegaard属完全等于g。

A topology is defined on the mapping class group of a compact connected orientable surface. It is shown that a notion of "genericity" on subsets of the mapping class group arises from this definition. Many plausible results follow from this notion easily; for example, the set of pseudo-Anosov maps is shown to be generic, and can be assumed to have arbitrary large stretch factor, generically. Let M be a 3-manifold obtained from a Heegaard splitting of fixed genus g and generic gluing map. It is shown that for such manifolds, generically M is hyperbolic, has first Betti number zero and Heegaard genus exactly equal to g.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源