论文标题
先进的运动和动作视频DeBlurring
Prior-enlightened and Motion-robust Video Deblurring
论文作者
论文摘要
视频中的各种模糊扭曲都会对人类观看和基于视频的应用产生负面影响,这使运动刺激性脱毛方法迫切需要。大多数现有作品在处理挑战性场景中具有强大的数据集依赖性和有限的概括能力,例如在低对比度或严重运动区域中的模糊以及非均匀的模糊。因此,我们提出了一个事先开启的运动型视频脱张模型(促销),适合于挑战性模糊。一方面,我们使用3D组卷积有效地编码异质的先验信息,在减轻输出的伪像的同时,明确增强了场景的感知。另一方面,我们设计代表模糊分布的先验,以更好地处理时空结构域中的非均匀模糊。除了经典的摄像头震动导致全球模糊外,我们还证明了局部模糊的下游任务的概括。广泛的实验表明,我们可以在众所周知的红色和GOPRO数据集上实现最先进的性能,并带来机器任务增益。
Various blur distortions in video will cause negative impact on both human viewing and video-based applications, which makes motion-robust deblurring methods urgently needed. Most existing works have strong dataset dependency and limited generalization ability in handling challenging scenarios, like blur in low contrast or severe motion areas, and non-uniform blur. Therefore, we propose a PRiOr-enlightened and MOTION-robust video deblurring model (PROMOTION) suitable for challenging blurs. On the one hand, we use 3D group convolution to efficiently encode heterogeneous prior information, explicitly enhancing the scenes' perception while mitigating the output's artifacts. On the other hand, we design the priors representing blur distribution, to better handle non-uniform blur in spatio-temporal domain. Besides the classical camera shake caused global blurry, we also prove the generalization for the downstream task suffering from local blur. Extensive experiments demonstrate we can achieve the state-of-the-art performance on well-known REDS and GoPro datasets, and bring machine task gain.