论文标题
一个用于分类系外系统体系结构的信息理论框架
An information theoretic framework for classifying exoplanetary system architectures
论文作者
论文摘要
我们提出了几种描述性措施,以表征外部系统内行星质量,时期和相互倾向的排列。这些措施基于复杂性理论,并捕获了每个体系结构的全球系统级趋势。我们的方法同时考虑了系统中的所有行星,从而促进了系统内部和系统间分析。我们发现,基于这些措施,如果大多数系统属于单个固有人群,则可以解释开普勒的高多重性($ n \ geq3 $)系统,其中有一部分高型系统($ \ sim20 \%$)托管了其他未发现的,在已知行星之间实时未发现的无未发现的星球。我们证实,系统中的行星往往大致相同,大约相同。我们发现,在开普勒数据中实际看到的高间距相似性(在log-period中)尚未重现高度间距相似性。尽管我们的分类方案是使用紧凑型开普勒多的测试样本制定的,但我们的方法可以立即应用于任何其他跨行星系统。我们将此分类方案应用于(1)量化系统之间的相似性,(2)解决物理趋势中的观察性偏见,以及(3)确定哪些系统可以搜索其他行星以及在哪里寻找这些行星。
We propose several descriptive measures to characterize the arrangements of planetary masses, periods, and mutual inclinations within exoplanetary systems. These measures are based in complexity theory and capture the global, system-level trends of each architecture. Our approach considers all planets in a system simultaneously, facilitating both intra-system and inter-system analysis. We find that based on these measures, Kepler's high-multiplicity ($N\geq3$) systems can be explained if most systems belong to a single intrinsic population, with a subset of high-multiplicity systems ($\sim20\%$) hosting additional, undetected planets intermediate in period between the known planets. We confirm prior findings that planets within a system tend to be roughly the same size and approximately coplanar. We find that forward modeling has not yet reproduced the high degree of spacing similarity (in log-period) actually seen in the Kepler data. Although our classification scheme was developed using compact Kepler multis as a test sample, our methods can be immediately applied to any other population of exoplanetary systems. We apply this classification scheme to (1) quantify the similarity between systems, (2) resolve observational biases from physical trends, and (3) identify which systems to search for additional planets and where to look for these planets.