论文标题

引导通过基于HMM的对齐方式进行弱监督的无分段单词

Bootstrapping Weakly Supervised Segmentation-free Word Spotting through HMM-based Alignment

论文作者

Wilkinson, Tomas, Nettelblad, Carl

论文摘要

手写文档中的单词发现的最新工作取得了令人印象深刻的结果。这一进展很大程度上是由监督的学习系统取决于手动注释的数据,从而使新收藏的部署成为了重大努力。在本文中,我们提出了一种使用成绩单的方法,而无需限制框注释来训练一个经过部分训练的模型,可以训练无分段的单词单词斑点模型。这是通过基于隐藏的马尔可夫模型的无训练对准程序来完成的。此过程在单词区域建议和抄录之间创建了暂定的映射,以自动创建其他弱注释的训练数据,而无需选择任何单个对齐可能性作为正确的可能性。当仅使用完全注释的训练集的1%到7%的部分收敛时,我们会自动注释剩余的培训数据并成功使用它训练。在我们所有的数据集中,我们的最终训练模型都来自训练训练的模型的几个地图百分比,该模型的完整训练集用作地面真相。我们认为,这将是对单词斑点更一般使用的重大进步,因为数字转录数据已经存在于许多感兴趣的部分中。

Recent work in word spotting in handwritten documents has yielded impressive results. This progress has largely been made by supervised learning systems, which are dependent on manually annotated data, making deployment to new collections a significant effort. In this paper, we propose an approach that utilises transcripts without bounding box annotations to train segmentation-free query-by-string word spotting models, given a partially trained model. This is done through a training-free alignment procedure based on hidden Markov models. This procedure creates a tentative mapping between word region proposals and the transcriptions to automatically create additional weakly annotated training data, without choosing any single alignment possibility as the correct one. When only using between 1% and 7% of the fully annotated training sets for partial convergence, we automatically annotate the remaining training data and successfully train using it. On all our datasets, our final trained model then comes within a few mAP% of the performance from a model trained with the full training set used as ground truth. We believe that this will be a significant advance towards a more general use of word spotting, since digital transcription data will already exist for parts of many collections of interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源