论文标题
磁矩在重铁材料中的关键作用:重新访问SMB $ _ {6} $的奥秘
Critical role of magnetic moments in heavy-fermion materials: revisiting mysteries of SmB$_{6}$
论文作者
论文摘要
由于存在开放式壳体$ f $离子以及相关电荷,轨道和自旋自由度的复杂性,重型特里米昂家族表现出引人入胜且经常令人困惑的特性。 SMB $ _6 $是一种典型的重型铁质化合物,具有电绝缘,但它显示了量子振荡,这是金属状态的明显签名。增加了谜团的可能性是SMB $ _6 $是一种拓扑昆多绝缘子。在这里,通过使用无参数强的强限制和适当符号(扫描)密度功能的其他自由度在同等基础上处理自由度的自由度,我们探索了SMB $ _ {6} $的地面电子结构。发现许多竞争磁相在能量上非常紧密,表明自旋波动在材料中的关键作用。 $ F $ - 电子配合物中的计算带结构,晶体场分布,费米能量的重有效电子质量以及大型特异性热量与相应的实验结果吻合。特别是,我们的预测FS解释了实验观察到的散装量子振荡以及SMB $ _ {6} $的低电导率。 SMB $ _6 $的拓扑结合状态无论其磁性配置如何,都显示出可靠的。扫描在繁重的特里米昂系统中的出色性能是根据其在密度功能理论框架内处理自我交互错误和对称性破坏的能力的解释。我们的研究提供了一种建模厚处材料的新方法。
Heavy-fermion family exhibits fascinating and often puzzling properties due to the presence of open-shell $f$ ions and the complexity of the associated charge, orbital, and spin degrees of freedom. SmB$_6 $ is a prototypical heavy-fermion compound that is electrically insulating but yet it displays quantum oscillations, which are a telltale signature of the metallic state. Adding to the enigma is the possibility that SmB$_6$ is a topological Kondo insulator. Here, by treating the spin degree of freedom on an equal footing with other degrees of freedom using the parameter-free strongly-constrained and appropriately-normed (SCAN) density functional, we explore the ground-state electronic structure of SmB$_{6}$. A number of competing magnetic phases lying very closely in energy are found, indicating the key role of spin fluctuations in the material. The computed band structure, crystal-field splittings in the $f$-electron complex, the heavy effective electron mass at the Fermi energy, and the large specific heat are all in good agreement with the corresponding experimental results. In particular, our predicted FS explains the experimentally observed bulk quantum oscillations as well as the low electrical conductivity of SmB$_{6}$. The topological Kondo state of SmB$_6$ is shown to be robust regardless of its magnetic configuration. The excellent performance of SCAN in heavy-fermion systems is explained in terms of its ability to treat self-interaction errors and symmetry breaking within the framework of the density functional theory. Our study provides a new approach for modeling heavy-fermion materials.