论文标题
用相位分布的矩阵探测非古老性
Probing nonclassicality with matrices of phase-space distributions
论文作者
论文摘要
我们通过统一准生物的概念和相关函数的矩阵来设计一种通过相位分布的相关性来证明非经典特征的方法。我们的方法补充并扩展了基于Chebyshev的不平等的最新结果[Phys。莱特牧师。 124,133601(2020)]。此处开发的方法将在相空间中的任意点上的任意相位函数相关联,包括多模式方案和高阶相关性。此外,我们的方法提供了必要且充分的非经典性标准,适用于$ s $质量化的相位空间函数,并且在实验中可访问。为了证明我们技术的功能,离散和连续变化,单模和多模的量子特性以及纯状态和混合状态仅使用二阶相关性和HUSIMI函数进行认证,这些功能始终类似于经典的概率分布。此外,研究了我们方法的非线性概括。因此,设计了一个多功能且广泛的框架,以从相空间分布的矩阵中发现量子性能。
We devise a method to certify nonclassical features via correlations of phase-space distributions by unifying the notions of quasiprobabilities and matrices of correlation functions. Our approach complements and extends recent results that were based on Chebyshev's inequality [Phys. Rev. Lett. 124, 133601 (2020)]. The method developed here correlates arbitrary phase-space functions at arbitrary points in phase space, including multimode scenarios and higher-order correlations. Furthermore, our approach provides necessary and sufficient nonclassicality criteria, applies to phase-space functions beyond $s$-parametrized ones, and is accessible in experiments. To demonstrate the power of our technique, the quantum characteristics of discrete- and continuous-variable, single- and multimode, as well as pure and mixed states are certified only employing second-order correlations and Husimi functions, which always resemble a classical probability distribution. Moreover, nonlinear generalizations of our approach are studied. Therefore, a versatile and broadly applicable framework is devised to uncover quantum properties in terms of matrices of phase-space distributions.