论文标题

脆性材料中数据驱动的故障预测:基于相位的机器学习框架

Data-Driven Failure Prediction in Brittle Materials: A Phase-Field Based Machine Learning Framework

论文作者

de Moraes, Eduardo A. Barros, Salehi, Hadi, Zayernouri, Mohsen

论文摘要

脆性材料的失败是由微裂缝在重复性或增加负载下的宏裂缝演变导致的灾难性的,通常是灾难性的,没有明显的可塑性来宣传裂缝的发作。在任何实际应用中,各自位置的早期故障检测都是完全重要的特征,这两者都可以使用人工智能有效地解决。在本文中,我们开发了一个有监督的机器学习(ML)框架,以预测等温,线性弹性和各向同性相模型中的故障,以损坏脆性材料和疲劳。相位模型的时间序列数据是从几何学不同位置的虚拟传感节点中提取的。引入了模式识别方案,以表示时间序列数据/传感器节点响应作为带有相应标签的模式,该图案与ML算法集成,用于带有识别模式的损伤分类。我们通过将随机噪声与时间序列数据进行超级噪声来进行不确定性分析,以评估使用噪声污染数据的框架的鲁棒性。结果表明,即使在存在高噪声水平的情况下,提出的框架也能够以可接受的精度预测故障。研究结果表明,有监督的ML框架的性能令人满意,以及人工智能和ML对实用工程问题的适用性,即脆性材料中数据驱动的失败预测。

Failure in brittle materials led by the evolution of micro- to macro-cracks under repetitive or increasing loads is often catastrophic with no significant plasticity to advert the onset of fracture. Early failure detection with respective location are utterly important features in any practical application, both of which can be effectively addressed using artificial intelligence. In this paper, we develop a supervised machine learning (ML) framework to predict failure in an isothermal, linear elastic and isotropic phase-field model for damage and fatigue of brittle materials. Time-series data of the phase-field model is extracted from virtual sensing nodes at different locations of the geometry. A pattern recognition scheme is introduced to represent time-series data/sensor nodes responses as a pattern with a corresponding label, integrated with ML algorithms, used for damage classification with identified patterns. We perform an uncertainty analysis by superposing random noise to the time-series data to assess the robustness of the framework with noise-polluted data. Results indicate that the proposed framework is capable of predicting failure with acceptable accuracy even in the presence of high noise levels. The findings demonstrate satisfactory performance of the supervised ML framework, and the applicability of artificial intelligence and ML to a practical engineering problem, i.,e, data-driven failure prediction in brittle materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源